A Novel Form of Chondrocyte Stress is Triggered by a COMP Mutation Causing Pseudoachondroplasia

نویسندگان

  • Farhana Suleman
  • Benedetta Gualeni
  • Hannah J Gregson
  • Matthew P Leighton
  • Katarzyna A Piróg
  • Sarah Edwards
  • Paul Holden
  • Raymond P Boot-Handford
  • Michael D Briggs
چکیده

Pseudoachondroplasia (PSACH) results from mutations in cartilage oligomeric matrix protein (COMP) and the p.D469del mutation within the type III repeats of COMP accounts for approximately 30% of PSACH. To determine disease mechanisms of PSACH in vivo, we introduced the Comp D469del mutation into the mouse genome. Mutant animals were normal at birth but grew slower than their wild-type littermates and developed short-limb dwarfism. In the growth plates of mutant mice chondrocyte columns were reduced in number and poorly organized, while mutant COMP was retained within the endoplasmic reticulum (ER) of cells. Chondrocyte proliferation was reduced and apoptosis was both increased and spatially dysregulated. Previous studies on COMP mutations have shown mutant COMP is co-localized with chaperone proteins, and we have reported an unfolded protein response (UPR) in mouse models of PSACH-MED (multiple epiphyseal dysplasia) harboring mutations in Comp (T585M) and Matn3, Comp etc (V194D). However, we found no evidence of UPR in this mouse model of PSACH. In contrast, microarray analysis identified expression changes in groups of genes implicated in oxidative stress, cell cycle regulation, and apoptosis, which is consistent with the chondrocyte pathology. Overall, these data suggest that a novel form of chondrocyte stress triggered by the expression of mutant COMP is central to the pathogenesis of PSACH.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abnormal Chondrocyte Apoptosis in the Cartilage Growth Plate is Influenced by Genetic Background and Deletion of CHOP in a Targeted Mouse Model of Pseudoachondroplasia

Pseudoachondroplasia (PSACH) is an autosomal dominant skeletal dysplasia caused by mutations in cartilage oligomeric matrix protein (COMP) and characterised by short limbed dwarfism and early onset osteoarthritis. Mouse models of PSACH show variable retention of mutant COMP in the ER of chondrocytes, however, in each case a different stress pathway is activated and the underlying disease mechan...

متن کامل

RNAi Reduces Expression and Intracellular Retention of Mutant Cartilage Oligomeric Matrix Protein

Mutations in cartilage oligomeric matrix protein (COMP), a large extracellular glycoprotein expressed in musculoskeletal tissues, cause two skeletal dysplasias, pseudoachondroplasia and multiple epiphyseal dysplasia. These mutations lead to massive intracellular retention of COMP, chondrocyte death and loss of growth plate chondrocytes that are necessary for linear growth. In contrast, COMP nul...

متن کامل

Pseudoachondroplasia is caused through both intra- and extracellular pathogenic pathways.

Pseudoachondroplasia is a dominantly inherited chondrodysplasia associated with mutations in cartilage oligomeric matrix protein (COMP). Investigations into the pathogenesis of pseudoachondroplasia are hampered by its rarity. We developed a cell culture model by expressing mutant COMP in bovine primary chondrocytes using a gutless adenoviral vector. We show that mutant COMP exerts its deleterio...

متن کامل

Identification of novel and recurrent mutations in the calcium binding type III repeats of cartilage oligomeric matrix protein in patients with pseudoachondroplasia.

Pseudoachondroplasia is an autosomal dominant osteochondrodysplasia characterized by disproportionate short stature, joint laxity, and early onset osteoarthrosis. Pseudoachondroplasia is caused by mutations in the gene encoding cartilage oligomeric matrix protein (COMP). We looked for mutations in the COMP gene in three sporadic Chinese pseudoachondroplasia patients and identified two novel mut...

متن کامل

Importance of Floating Chondrons in Cartilage Tissue Engineering

BACKGROUND Dedifferentiation of chondrocytes remains a major problem for cartilage tissue engineering. Chondrocytes loss differentiated phenotype in in vitro culture that is undesired for repair strategies. The chondrocyte is surrounded by a pericellular matrix (PCM), together forming the chondron. PCM has a positive effect on the maintenance of chondrocyte phenotype during culture in compar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2012